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Abstract—The second-order laminar boundary layer along a circular cylinder in supersonic flow with and
without surface mass transfer is studied using the method of matched asymptotic expansions. Specifically,
the analysis obtains the second-order terms for the pressure, the shear stress, and the heat transfer at the
wall due to transverse surface curvature and displacement. For the flow near the leading edge of the cylinder
numerical results are presented.

There are three second-order effects, namely due to transverse curvature, due to displacement, and due to
interaction of curvature and displacement.

For the solid wall all three second-order effects increase the shear stress and this result increases with
increasing wall temperature. In the case of heat transfer, the displacement effect vanishes, the interaction
effect is always positive (increasing the heat transfer), and the transverse curvature effect is positive for small
wall temperatures and negative for large wall temperatures.

The effect of mass flow at the wall is generally in the expected direction; i.e. the injection of mass thickens
the boundary layer and increases second-order effects whereas wall suction, by extracting mass from the
boundary layer, reduces the importance of displacement and transverse curvature. An exception to the

general rule stated above occurs at high wall temperatures.

NOMENCLATURE fined by equation (1);
a, speed of sound; C, coefficient representing the trans-
Ao, constant in equation (33); verse curvature effect on wall shear
B, JM? —1); stress defined by equation (90);
B,, n = 0, constants in equation (34); Cp coeficient representing the trans-
1,2,... verse curvature effect on wall heat

¢y, local skin friction coefficient de- flux defined by equation (91);

fined by equation (15): D, coeflicient representing the dis-
Cags mass transfer parameter defined by placement effect on wall shear stress

equation (12); defined by equation (90);
Cpr specific heat capacity of constant E, (y — 1) M?/2, Eckert number;

pressure ; Jop, nondimensional stream function
Cpwr wall pressure coefficient defined by defined by equation (39);

equation (14); Jo(m), f1(n), nondimensional stream functions
C, Chapman-Rubesin parameter de- defined by equation (68);
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F{m),
n=20,
1.,

g(n),

g 0(’1)1
gl(??),
G.n),
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functions defined by equation (57);

nondimensional temperature func-
tion defined by equation (43);
nondimensional temperature func-
tions defined by equation (69);
functions defined by equa-

tion (57);

modified Bessel function;
coefficient representing the inter-
action effect on wall shear stress
defined by equation (90);
coefficient representing the inter-
action effect on wall heat flux
defined by equation (91);

thermal conductivity ;

modified Bessel function;

Mach number;

nondimensional static pressure de-
fined by equation (2);

local heat flux at the wall;

1 + y, nondimensional radial co-
ordinate ;

radius of the cylinder;

Reynolds number defined by equa-
tion (9);

Stanton number defined by equa-
tion (16);

nondimensional temperature based
onT,;

wall temperature;

free-stream temperature ;
nondimensional velocity compo-
nent in x-direction of the inner solu-
tion ;

nondimensional velocity compo-
nent in x-direction of the outer
solution ;

free-stream velocity ;
nondimensional velocity compo-
nent in y-direction of the inner soiu-
tion;

nondimensional velocity compo-

7,
6(x, n),

A
T8

o,
o,

tw’

é,
Yix, y)
7s

,

Subscripts
%0,

Superscript
*

nent in y-direction of the outer solu-
tion;

function defined by equation (31);
nondimensional axial coordinate;
nondimensional coordinate perpen-
dicular to the wall;

y/e stretched coordinate ;

variable used in equations (31) and
(32);

ratio of heat capacities;
perturbation parameter defined by
equation (17);

nondimensional inner variable de-
fined by equation (36):

variable defined by equation (38);
second order iemperature function
defined by equation (43);

variable in equation (31);
nondimensional viscosity, based on
free-stream viscosity ;
nondimensional density based on
free-stream density ;

Prandtl number;

wall shear stress;

potential function defined by equa-
tion (24):

second order stream function de-
fined by equation (39);

viscous interaction parameter de-
fined by equation {78);

vorticity in the outer flow defined by
equation (20).

undisturbed free stream;

wall ;

adiabatic wall ;

first order;

first order for M =0 and 7T, = 0
second order.

dimensional quantities.
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1. INTRODUCTION

IT 1s well known that the classical Prandtl
boundary-layer theory is valid only when two
basic requirements are fulfilled : (1) the boundary-
layer thickness must be small compared with a
characteristic curvature dimension of the body
surface and (2) the rate of growth of the boundary
layer must be small. In this way, the curvature of
the flow in the boundary layer as well as the dis-
placement effect of the boundary layer on the
inviscid free-stream flow can be completely
neglected.

In many practical situations, however, these
basic requirements are not fulfilled and, there-
fore, the use of the Prandtl boundary-layer
theory is not justified. Examples of flows in
which relatively thick boundary layers occur
include high supersonic or hypersonic flows
where viscous heating reduces the density and
hence increases the thickness of the boundary
layer. Ablation and transpiration cooling also
thicken the boundary layer by the introduction
of additional mass. Thick boundary layers can
also occur at the rear of long slender bodies ; the
boundary layer has continued to grow by
entrainment from the free stream so that its
thickness can no longer be neglected.

A higher-order theory is necessary in order to
study the effects of body curvature and dis-
placement on the behaviour of the boundary
layer. Van Dyke [1-4] has given careful and
extensive treatments of this theory to obtain
solutions for the Navier-Stokes equations at
high Reynolds numbers using the method of
matched asymptotic expansions. The classical
boundary-layer theory represents the first appro-
ximation to the solution. The second approxi-
mation, usually referred to as second-order
boundary-layer theory provides a systematic
framework to study the effects of body curvature
and displacement. Other second-order effects can
also arise from external gradients of entropy
and enthalpy (vorticity) or from velocity slip
and a temperature jump at the wall; these will,
however, not be considered here.

Few studies have been made in which the
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second-order effects resulting from curvature
and displacement have been completely and
properly treated. The reason is that determina-
tion of the second-order effects is only possible
at the present time if the boundary layer does
not separate. Complete solutions of the second-
order boundary layer exist only for the parabola
(Van Dyke [5]) and the Rankine half body
(Devan [6]). In both cases, the longitudinal
curvature effect and the displacement effect are
treated. The extension of these solutions to in-
clude mass flow at the wall is given by Gersten
and Gross [7] and Gersten et al. [8]. In the case
of wall injection particularly, the second-order
effects which result from boundary layer thicken-
ing can be greatly enhanced.

A body which has only transverse curvature is
the circular cylinder whose axis is parallel to the
free-stream flow. For this body, the effect of
curvature alone has been investigated for the
case of incompressible flow by Seban and
Bond -[9], Kelly [10], Cooke [11], Glauert and
Lighthill [12], Eshgy and Hornbeck [13],
Wanous and Sparrow [14], Jaffe and Okamura
[15] and Cebeci et al. [16]. These solutions are
not complete, however, because the displace-
ment effect is missing and only incompressible
flow is comnsidered.

Consider the supersonic flow along the outer
surface of hollow circular cylinder whose axis
is parallel to the free stream. The effects of trans-
verse curvature and boundary-layer displace-
ment as well as those of mass flow at the wall will
be studied. It is assumed that the flow inside the
cylinder cannot affect the flow on the outer
surface.

The purpose of the present work is to deter-
mine the second-order effects resulting from
transverse curvature and displacement on the
induced wall pressure, wall shear stress, and wall
heat transfer. Further, it will be shown how mass
flow at the wall (injection and suction) influence
these second-order effects.

2. BASIC EQUATIONS
We consider the supersonic flow of velocity
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U, along the surface of a cylinder with radius

ro and with its axis parallel to the flow direction
(see Fig. 1). The coordinates in the axial and
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T o

1G. 1. Coordinate system for circular cylinder in axial flow.

radial directions are x* and y* respectively
[{ )* indicates dimensional variable]. An
idealgaswith constantspecificheat, c,, isassumed.
The Prandtl number o = ¢ /.t"‘/k* is kept con-
stant so that the viscosity, u4*, and the thermal
conductivity, k*, have the same dependence on
the temperature, T*. The following assumption
for the viscosity variation is made:

p*u* = pupt, = Cp,u,, (1)

when the indices w and o refer to the wall and
free-stream, respectively. In equation (1), C is
the well-known Chapman-Rubesin coefficient.

Rotational symmetry reduces the velocity
to two components: u* in the x* direction and v*
in the y* direction. The variables are made
nondimensional as follows:

x* *
V - —— 7 ——
o To
* &
U = _H_ U= %“ (2)
© )
p* —p p* T* u*
p= Uzwv =—, T= 717‘! Ho=—
pco Vel pao o “30

The five dependent variables are the velocity
components u(x, y) and {x, y), the static pressure
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pix, y), the density p(x, y), and the temperature
T{x, y). By r = 1 + y the flow equations for this
system are given by:

I
P 0x P Jdy

ray(

d 0
é—;(pru) + ~6—}—’(pru) ==
ip 1 ¢ [ Ou
xR %w(a)
16 60
ray
290 ou dv v
sm— 53l o
g.a.'.)."{— é_li_._.
péx pva}'_ ¥ réy

10
e
) o

__gév 6u dv
syt 5

oT aT op ap
pu5;+p05;—2E(u5;+va:>
Lo (T 10 éz:]
oR | ax \M 3% r gy K dy
2E
+—§~u¢' {6)

where @ is the dimensionless dissipation function
given by

P =2 ou’ +avz+22 —F—é'£+§Ez
éx dy r dx  dv

du fv e\
(ax—i*a"?' ;) 7N

(8)

The equation of state is
-11 1
- —-1) =
P="T"73 (pT—1) M2
The above equations contain the following
dimensionless parameters:

(pT— 1)
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Reynolds number:

R = pooerrO
o
Eckert number:
U? y =1
== =Ll TMZ (9
E 2, T, 2 ©)
Mach number
= J

Here, the dimensional sound velocity in the free-
stream is designated by a .. The speed of sound,
a*, is given by:

a * *
a*? = (?3%")5 = yg_* =y = HT* (10)
In the free-stream, this becomes:

a: = 'y-gﬂ =cfy - 1T,

K

(11)

For simplicity we assume that the normal
wall velocity v,, ~ 1/,/x. Therefore, the boundary
conditions for this system are:

At the wall:
y= u=70
_ Pbw &/C
pv =oU. - 2% Cy (12)

T,
= -~ = constant

T,
where C,, is constant and designated as the
wall mass transfer parameter. For the case of
mass injection, C,, < 0.and C,, > 0 for suction
at the wall The parameter ¢ is given by equation
(7).

In the free-stream:

x<0 u=1
v=20
p=0 (13)
p=1
T=1
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The functions p,(x) and p,(x) are unknowns
and will be found as part of the solutions to the
equations.

The dimensionless parameters y, 6, C, R, E
{or M), T,/T,.. and C,, are prescribed and it is
requiredtofind theunknowndependentvariables
u(x,y), vx,y). p(x,y), p(x,y), and T(x,y). In
particular, we wish to determine the distribution
of pressure and density at the wall:

Pol¥) = P _ i ),

CpulX) = PIE

PuX)

o

= p(x,0). (14)

The wall shear stress:

C p, (Ou
AN =2 0T = Rouo) (E)c (13)

and the heat transfer at the wall (Stanton-
number):

St(x) — Qw(x) _S po:

cT
= er U.T, - " oR puxx)(é'?))-zo(l6)

We are concerned with solutions of the equations
at large values of the Reynolds number, i.e. for
R — oc. The solutions will be obtained using the
method of matched asymptoticexpansions where
the perturbation parameter ¢ is given by:

== )

The solutions will be obtained by appropriately
matching inner and outer expansions which
satisfy the inner and outer boundary conditions,
respectively. The inner solution will then yield the
required wall functions.

(17

3. OUTER EXPANSION
The following expansions are assumed for the
outer flow:
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u=Ux,y+eUsx.p)+...
v = Vix.y) + eValx. y) + ...
p=Px,y)+ePiylx, )+ ...
p=Rix.v) + eRsx,y) + ...
T= Tix,y) + eThlx, ) + ...

(18)

Substituting these expansions in the flow equa-
tions and matching with the undisturbed free-
stream conditions yields the first-order terms
directly:

U =1LV,=0P, =0R, =1T, =1 (19

The second-order terms are obtained by substi-
tuting the above expansions into equations (3)-
(8) and collecting terms according to powers of &.
This gives a set of five equations for second
order terms: U,(x, y), Valx, ), Py(x, ¥), Ryix, y)
and Tu(x, y).

Elimination of P, in the second-order momen-
tum equation yields the vorticity in the outer
flow:

&y, fu,

Cx ¢y

= wl(y) (20)
where w(y) is the constant of integration which
remains to be obtained from the boundary
conditions. Since we have assumed no vorticity in
the undisturbed free-stream, any vorticity which
occurs must result from the presence of curved
shock waves, It will be shown that the second-
order terms, which represent a correction to the
undisturbed free-stream. are solutions to the
linearized potential flow equation. Therefore,
within the context of second-order theory, no
shock waves and hence no vorticity in the outer
expansion can occur. It is always true that:

¥ 9V, 21)
0x cy

Therefore, the entropy in the entire outer field
is also constant. Equation (10) for the speed of
sound can be written:

Ak

o

P,

= a1 +eTy).  (22)

|

o}
)
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The difference between a* and @, is small, of
O(e), and can be neglected. 1t follows then that the
continuity equation for the outer flow becomes:

(.q‘ Uz I’/z

(1— MH 2 4 Y2y,

= 3
éx  1+y &y 23

Equation (21) for the vorticity can be satisfied by
a potential function ¢:
The substitution of equation (24) into equation

{23) yields the well-known potential equation
for axisymmetric flow:

) 1
1 — M~ . o ——. =0 {2
( Vo + by 80 = 0 29)

The third term in equation {25) represents the
difference between two-dimensional and axi-
symmetric flow. '

The unknown potential function must satisfy
the following boundary condition

Psly=0 = Valx, 0) (26}
where V,(x, 0) is obtained by matching the inner
and outer expansions and can be considered as
known. Having obtained ¢{x,y), the five un-
known functions are immediately given by

Uy(x, ) = ¢,
VZ(x5 Y) = ¢y
Pis )= =Uslx,y) = ~ ¢, 27

ImE 2E
Ry(x.y) = ”“f_"“; Py(x, y)~ Ty(x, p)= — 71 s

Tl{x, _V) = 2EP3(x~ y) = 2E¢‘C

For the matching process, it is of particular
interest to obtain the velocity components in the
x-direction at the wall; ie.

Uyx.0) = ¢_(x.0). (28)

Several methods are available to solve the poten-
tial equation, equation (25), with the boundary
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condition, equation (26). If one does not
require the solution ¢(x, y) specifically, but only
the relationship between V,(x,0) and U,(x,0),
then the operator method can be used. Ward [17]
has shown that the relationship between V,(x, 0)
and U,(x, 0) is given by

Us(x,0) = — % {szx, 0) - -;JW(" = 5)
0

V2(¢, 0) dé} (29)
with
B=JM? - 1) (30)
The function W{z) is given by:
i e 4 di
W(z) :j‘O MT z20 (31)

where K,(4) and I,(4) are modified Bessel
functions. The function W(z) is given by Ward
[17]. The expansion for W(z), when z is small, is
given by

Wiz) =4 —3z+ 522 — ... 0<z2<2.(32
Solutions near the leading edge, i.e. for small x,

will be examined more closely. The function
V,(x, 0) can be written in the form

33

If we use the expansion for W(z) for small z
[equation (32)], then equation (29) yields

1 N
U = ",
(%00 = 3 B,x (34)
The initial coefficients are then given by
Ag A 14
Bo=—3° Bl=~§29, Bz=—5§§. (35)

4. INNER EXPANSION

For the inner expansion, a new variable, #, is
defined as follows:

.
1 1
’7=Em'{.l’(l+)’)d}’- (36)
[
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The effect of p, the density, can be accounted
for by the Dorodnitsyn-Howarth transforma-
tion which transforms the compressible flow
problem to an incompressible one. Equation
(36) can be written:

y = e2,/(Cx) ‘f i—" + 0(e%). (37)
0

It can be seen that n [see equation (36)] and #
defined by:

(38)

differ only by O(¢). For an incompressible flow,
#j reduces to the well-known similarity variable
for first-order boundary-layer theory (Dewey
and Gross [18]). In that case, the function y/e
would have sufficed for the inner variable. The
generalization of # given in equation (36)
has been chosen to simplify the equations.

The five unknowns are functions of x and n
only and the following analytical asymptotic
expansions are assumed :

u =%f’+a‘/clﬁ,,+ 0(c?)

= (39)
1 /{C
V= »Zﬁ/(;)(fg’—-gf’)-# 0(82) (40)
p = e J(O)p; + Ofe?) (41
1
5= T(1 + yM?p)~! = 1g + (/CO) 486,
- $7M?pg) + Oe?)  (42)
T=§g’+el/i£9,t + 0e?). (43)

Here the indices x and #n denote partial
differentiation and primes indicated( )/dn. The
expansions for u and v have been selected so
that continuity is satisfied. The value for v at
the wall is given by



2 1 3
—& C(\/(-‘Wx"'ml//)‘?‘ Oed).  (44)

Inspection of the y-momentum equation. equa-
tion (5), shows that for the pressure p no absolute
term can be obtained and that the term pro-
portional of ¢ is independent of #, i.e. p, = p,(x).

Substitution of equations (39)+{43) into the
x-momentum equation. equation (4), and the
energy equation, equation (6), yields the follow-
ing differential equations for the unknowns
S(n), gm), Y(x. n), and B(x, n):

"+ =0 {45)
Lyt fgn = - B (46)
Yo + Staq + W = 22U — W)
+A4xg' 2 — 2J(XNg [ + gf  (47)
Oy + Oy = 250, ~ 19"
—¥g" - z%f(g’g” +499") — 2E[f"Y,,
+ (X7 + 2xpangf]. (48)

Only the first of these four differential equations
is nonlinear; the others are linear. Therefore
Y(x.n) and g(n) are linear functions of the
Eckert number E, while 8(x,#n) is a quadratic
function of E.

The form of n makes f(n) independent of the
other unknowns. Equation (45) represents the
classical flat plate boundary-layer problem
whose solutions are well known. Once f(n) is
known, the remaining differential equations can
be solved successively. However, the following
boundary conditions at the wall must be
satisfied:

n=0: f=Cy f'=0
. T,
49
y=0. =0 u=0

'!
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The conditions 8(0) = 0 follows from substitu-
ting equation (42) into equaiion (37) and
requiring # = 0 when y = 0.

In order to obtain the boundary conditions
for the inner solution when n — =, the two
solutions have to be maiched. The outer
expansion is first written in the inner variables
x, ¥ where 7 = y/s. The expansion is evaluated
near the wall:

u=1+eUyx,ey) =1 + elUsx.0) + Oe?)
v = eVy(x.e9) = eVa(x.0) + Oe”)
p = eP.{x,e9) = eP,(x,0) + 0e?)
p =1+ eRy(x.e) = 1 + eR,(x,0) + Oe”)
T=1+sThx.ef) = 1 + eTo(x.0) + Ofe?).

{50)

In this particular example, all asymptotic
expansions to O(g) are independent of y. Since
¥ is of the same order as » [see equation (37)],
equation (50) can be considered as the asymtotic
expansion of the outer solution ininner variables.
Therefore, the following matching relations are
obtained if only terms to O(e) are considered.

1 (j'l
1+ eUq(x.0) = lim(-?:f’ + aisgx&”)

= r

1 /{cy.
Va(x.0) = — 3y (;)hm fg' — af

S

P,(x.0) = (JO)p:ix) {51)

) ) | vC
1 + eR(x.0) = lim L,)—g +a-;~(9,,

< -1

L

— yM?p;g)

A , \;"C
1 + eThix,0) = hm(-,;g + a-;’—-Q,,)

n— i

From these expressions. one obtains immediately
the boundary conditions

lim f" = 2
o
limg =2
Ll

ls

I} -t = — 2 — | Vix. 0
im{f— @ V/( )-{V )

n—

G
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2
lim ¢, = — U,(x,0 52
- n \/C 2 ) ( )
pa(x) = \/C Py(x,0)
lim 6, = Ty(x, 0).
n—= o " \/C 2

The purpose of obtaining the inner solution is to
deiermine the important flow properties at the
wall. These are the pressure, shear stress, and
heat transfer at the wall as defined in equations
(14)<16). The inner solution enables one to
write directly:

CpulX) = %_ = &P,(x,0)
= o /Opslx)  (53)
pul¥ _ T [, M
T T [1 + y\/C P2(x,0):\ (54)
_Tx) 1 C
o= - 49
X Uw +¢ \/C)d/qq]q 0 (55)
_ L")M - L jc
o ot S
x (g” + 8(\/C)6rm)q=0' (56)

Only five functions are needed to evaluate the
wall properties, ie. py(x), f(0),¢,(x,0),g"(0)
and 6,(x,0). These functions are in general
dependent on the parameters y, C, 6, E or M,
T./T., and C,,.

5. SOLUTION FOR THE LEADING EDGE
In this section, we carefully examine the
solutions to partial differential equations, equa-
tions (47) and (48) for small values of x, i.e. in the

neighborhood of the leading edge. The
following expansions are assumed :
N
Yix,n) :/—- Y X"F (1)
N
e(xs 77) = (57)

% z ann(ﬂ)

0
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1
'\‘/—C,Uz(x, 0)
_ 1
T JCx %

The last equation for p,(x} is a combination of
equations (27), (34) and (52). Substituting equa-
tion (57)into equations (47) and (48) and ordering
the terms by powers of x, a set of ordinary
differential equations results

pa(x) = J CPz(x ,0) =

S By

!H ’ ’ Bo I
+ fFg +fF0_JC (58)
" ZB I
F{'+ fF{ —fF, + 2f"F, = ~7 é
—-2f"g = 2o"g (59
1.
¢ +fGi + Gy = — 2Ef"Fg
—2 5 60
Jc c (60)
1 ’
S0 +fG -Gy = —2F4

2
_ E_(g’g” + ggnr) _ 2E[f/valf + g(fn)z
BI ]

The boundary conditions for the system of
equations (58){61) are

G, =0
F1=O F’1=0 GI——O
G, =0 (62
- 00 Fo...2 G5=—4E&
\/C JC
B, (63)
F; _2 G| = —4E—
Jc ! JC
) BB
im [f(n) — gm)] = 2—=. (64)

n= o
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The expressions for F(0) and G4(0) can be
obtained from equations (58) and (60) by a
straightforward procedure. The equation for
F o(n) may be integrated directly and the result is

2B
Fy(n) = F5(0) + Tcog"') —fmFoln).  (65)
When n — oo, we obtain
4BB?
Fy(0) = == lim [fin) — gin)] = ——°—. (66)
1) \/C ——

An analogous integration procedure for Gefn)
fromn = 0ton = 2 gives

B
~GY0) = — 4E—2 lim f(n) + 2E
o(0) \/Cn-,f")

el j J'Fydy+ jf'g'dn}

The integrals in equation (67) have been
calculated by using the expressions given in
equation (65). This interesting result has also
been noted by Maslen [19].

The mass-transfer parameter C,, directly
influences f and, due to the nonlinearity of the
equation for f, cannot be assumed to be linear
in the system. If, however, the parameter Cy, is
taken to be small, all functions can be expressed
as linear combinations. For example, we can
write

(67)

fim) = foln) + Cpds(m) (68)
g(n) = goln) + Crg () (69)
which yields a set of differential equations
III +f0f6 — 0
Hl +f‘0/l + = O
1
595 +fods = = EG)’ (70)
-
1 i " " i Feis
—g7 + fog1 = — f195 = 2Efof

Pr

with the boundary conditions
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1=0: fo=0 fi=0 go=0
ga=z%
fi=l fi=0 g,=0
g1=0
n—x fe=2 go=2 7
fi=0 g, =0.

An analogous procedure for smaill C,, can be
carried out for the functions F, F,, Gy and G,.
Exact calculations showed that a linear approxi-
mation using C,, introduces an error of less
than 1 per cent for | C\| < O-1.

The solution to the system of equations can
be used to evaluate the wall properties defined
in equations (53)56):

CplX) = — 8Box "t + Byxt + ) + 02) (72)
/() = ei\/(g){f"m) + ey O [Fy0x
FROXE 4+ ] 06 (7)
St(x) = — 84—10: <%) {g"(0) + ey O)
x [GYOx? + .. ]} +0e®).  (74)

The coefficients in these expressions, ie. the
second derivatives of velocity and temperature
at the wall, are functions of the wall temperature
T./T,, the Eckert number E, and the mass-
transfer parameter C,,, which, however, will be
assumed to be small. The term proportional to
F4(0) gives the effect of displacement without
wall curvature and is hence identical with the
displacement effect on a flat plate. It can be
seen that the term is proportional to &2/x, which
is independent of the radius of curvature and
identical to that found in the solution for the
flat plate by Maslen [19]. According to equation
(74), the heat transfer is unaffected by displace-
ment thickness, a result which has also been
noted by Maslen [19] (see also Hayes and
Probstein [20]). The shear stress at the wall
resulting from displacement does not disappear
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at the leading edge but is proportional to x !

This leads to the result that the integral for the
overall wall shear stress does not converge.
This is clearly due to the singularity existing at
the leading edge. Within the context of the
theory of asymptotic expansions, in which the
second-order " solutions are linear corrections
to the first-order flow, the displacement effect
can be regarded only as a linear correction in the
sense of weak viscous interaction. In the
neighborhood of the leading edge. it is clear that
a strong viscous interaction obtains. This
cannot be treated here.

The influence of curvature on the flow and
temperature, which is given by the terms
proportional to Fj(0), and G/(0), respectively,
can be separated formally into two parts. The
first part. regarded as pure curvature effect,
results from additional terms appearing in the
inner expansion for the flow. The second part,
which we denote as interaction effects, results
from the displacement effect. For the same
boundary layer displacement thickness, this
latter effect is weaker for the cylinder than for
the flat plate. For the same reason, the surface
pressure along a cone whose axis is parallel to
the flow is less than that about a similarly
placed wedge with the same angle.

6. NUMERICAL RESULTS

A. Solid wall

The system of equations (58)+61) and (70)
with the boundary conditions given by equations
(62)+64) and (71) was solved numerically for
¢ = 0-72. In the case of the solid wall (C,, = 0)
equations(72)74) give the following expressions
for wall functions

CplX) _s\/(C)< \l/ ‘I/;f)[osam

- 09703 (l - %3>+ 0-2878 E:I (75)

e (o [
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2
~ 09703 (1 - %‘i)+ 02878 E:| + 8‘/;?‘)

X [1-1656 - 05700 (1 - %‘3)-!- 01276E]

x [1 - 1-11278 (1 - %ﬁ>+ 03345 E]
T,
+ &/(Cx) [06943 — 04894 < - ?>
+ 009095]} (76)

Stix) = — g\/(?){owss( - T%)

+ 02506 E + ¢ ‘/ ()

[0 2151 — 00935

(} - T£)+ 0-2505 E:l I:I -~ 11278
X (1

X [0'66

>+ 03345 E] + &,/(Cx)

’~l|~3

L
\O

(1 )+ 0-5198 E — 0-4560

T 2
x(l—-—“ (}2798E( —%)

o

]

+ 00665 (E)Z]}. (717)

The pressure distribution on the wall [see
equation (75)] is a second-order effect which
results directly from the displacement caused
by the first-order boundary layer. The expres-
sion for the pressure is a composite of two parts,
each having a different dependence on x. The
first part is identical with the flat plate result of
Maslen [19]. This is clear by inspection because
¢/\/x is independent of the radius of curvature.
The second part, proportional to &,/x, gives the
influence of transverse curvature on the displace-
ment. Therefore, the second part contains both
the transverse curvature as well as the displace-
ment. It will hence be called the Interaction
Effect. It reduces the pressure from that found
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on the flat plate as expected. Although both
terms have a different dependence on x, both
give a pressure drop so that they have a similar
second-order effect on the boundary layer.

The numerical values in the brackets in
equation (75) agree very well wiith those given
for ¢ = 0725 by Hayes and Probstein [20],
equation (9.2.5b):

g =072 = 0725
0-8604 0-865
0-9703 0-968
0-2878 0-289

The pressure distribution resulting from
boundary-layer displacement is directly related
to the problem of weak interaction (Hayes and
Probstein [20]). The interaction parameter,
which has been defined for high Mach number
flows on flat plates, cones, and wedges, is:

, oM

Jx

(78)

Using this parameter, equation (75) may be
written:

Pou{X) Ce?M*\ v
— 1 =/ 1 et 72

[08604

P, M?
- 09703 (1 — ;‘3 + 0-2878 E:‘ {79)
It has been assumed th;t M > 1. so that
B~ M. (80)

For the same reason, equation (79) may be
written

2 5
pulX) 1= 7(1 _Ce ‘M )[09703_]\%

P

x

x (%— 1>+ 01439y (y ~ 1)]. (81)

An important role is played by the first-order
adiabatic wall temperature

Twa

=1+ 08478 E. (82)

»
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Substituting the adiabatic wall temperature into
equation (81) with y = 1'4, we obtain:

Pe g2 0.311-/(1 - CgM) (83)

el

If the second term in the bracket is neglected.
equation (83) gives the expression for first-order
weak interaction (Hayes and Probstein [20])
and the range of validity for weak interaction is
given as 0 < y < 4. Strong interaction obtains
for y > 4. The effect of transverse curvature is
given by the second term in the parentheses and
depends on y and the combination of parameters
Cs2M?. Since the effect of transverse curvature
decreases with increasing y, we can expect in the
strong interaction region where y > 4, that the
role of transverse curvature will be small. The
region in which this will be correct is given by:

1

ik (84)

e? <
It will be assumed that equation (84) is satisfied
in subsequent considerations. Therefore, all
results are valid for y < 4. For y > 4, the strong
interaction solution for the flat plate can be used.
The relationship between our solution and
that for the flat plate with weak interaction was
illustrated only for the purpose of estimating a
region of validity for our solution. In general, the
weak interaction theory is concerned with two
perturbation parameters: ¢ and 1/M. Both para-
meters approach zero in such a way that the com-
bination of these parameters ¥ = &(M ¥ is of
order unity. In the hypersonic-flow solution. a
weak shock ensues which must be coupled to the
linearized potential flow solution by an inter-
mediate inviscid layer (see Bush and Cross [21]).
In the case where M — oc, great care in matching
the boundary layer to the free stream is necessary
as indicated in detail by Bush and Cross [21] and
Stewartson [22].
— In order to estimate the errors resulting from
the truncation of the series in \/x in equation
(75), we consider the first neglected term. If we
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include this term, then the expression in the
brackets in equation (75) would be

1 Jx [ X )

B/x B? 2B/

If we assume an error of 10 per cent in the last
term to be included, then we obtain an expression

for the range of x for which the series expansion
is valid:

(85)

x<02B (86)

Considering only high Mach numbers and
assuming that no transverse curvature effects
occur in the strong interaction region, the rangc
of validity for our solutions is given by:

01Ce*M® < x <02 M. (87)

It is difficult to estimate how far downstream
the second-order solution is valid without having
done the third-order theory. Estimation of the
third-order contribution from transverse curva-

FiG. 2. Induced wall pressure distribution.
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ture gives a value of x above which third-order
effects must be taken into account

0-01

T (88)

X =
It would be reasonable to expect, however, that
displacement would reduce the values of x given
in equation (88) for which third-order effects
become important.

The induced wall pressure distribution C,,(x)
is shown in Fig. 2 as a function of Mach number
and temperature ratio, T,/T,. The pressure
function is positive in general and increases
linearly with temperature. The dependence on
Mach number is quadratic. It is interesting to
note that the pressure can even be negative in a
small region near M = 1. For all Mach numbers
M < 1-381, there is a temperature ratio, T, /T,
for which the induced pressure distribution
disappears

% = 01133 — 0:0593 M2

o

89)

We are concerned in this instance with very
low wall temperatures. Consequently, the density
near the wall is very much greater than in the
free stream. Because of this high density at the
wall and in the boundary layer, the mass flow
in the boundary layer remains constant in spite
of the velocity reduction near the wall. In some
cases, the mass flow can even be greater than
that in the free stream. Therefore, in the region
near a Mach number of unity, the boundary
layer could exert a negative displacement effect,
i.c. a suction effect on the free stream.

Equations (76) and (77) can be formally
written as follows:

cr 1
——=14+¢& /O CA/x)+ D, —
CflO \/ ( \/ ) \/x
+ I,\/x) (90)
St St,
St =St + 8O C(/x) + I /X).
The indexes 1 and 10 in the subscripts indicate
first-order solutions and first-order solutions

(91)
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FI1G. 3. Displacement effect coetficient for shear stress D,
according to equation (90).

with M = T, = 0. respectively. The functions
in the parentheses represent the second-order
solutions. C, and C, are the transverse curvature

6

2
r®
F1G. 4. Transverse curvature coefficient for shear stress C,
according to equation (90).
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effects: D, is the effect of dispiacement which
occurs only for the shear stress, and I, and I are
the interacting effects of transverse curvature
and displacement. These functions are dependent
on the Mach number and wall temperature ratio,
T,T,.

The displacement coefficient, D,, which is
identical to that for the flat plate, is shown in
Fig. 3. D, is always positive, even in regions in
which the induced wall pressure is negative.

7 54—

50

2:5

g | LR

F1G. 5. Second-order interaction parameter for shear stress
I, according to equation (90).

For values of wall temperature ratio, T,,/T,,
given in equation (89), D, = 0. For values of the
adiabatic wall temperature and high Mach
number, D, is given by

D, = 0-1485 M*

Neglecting curvature effects and using the
definition of y, equation (90) gives the well

(v = 14).  (92)
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FiG. 6. First-order Stanton number.

known flat-plate weak interaction expression
(Hayes and Probstein [20], equation (9.2. 26))
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FiG. 7. Transverse curvature coefficient for heat transfer C,
according to equation (91).
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Cry
The coefficient C, is given in Fig. 4 as a function
of M and T,/T,,. It is always positive and linear
with the wall temperature ratio T,/T,. It is a
quadratic function of M. Figure 5 shows the
interaction coefficient I. It is also always

r
W
@

F1G. 8. Second-order interaction parameter for heat transfer
1, according to equation (91).

positive and nonlinearly dependent on T,/T,,.
All three coefficients, D, C, and I, are of the
same order of magnitude.

The coefficients which occur in equation (91)
are shown in Figs. 6-8. Figure 6 shows the well
known behaviour of the Stanton number for
the first-order boundary layer. The characteristic
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zero values for the adiabatic wall temperature
given by equation (82) are shown. The curves C,
as functions of wall temperature ratio in Fig. 7
show a similar behavior. For small values of the
wall temperature ratio, T,/T,, the curvature
effect is initially positive but changes sign with
increasing temperature. For each Mach number,
a wall temperature ratio exists for which the
curvature effect is a maximum.

It has already been indicated that there is no
displacement effect on heat transfer. The inter-
ference effect is shown in Fig. 8. It is always
positive and increases nonlinearly with Mach
number and wall temperature ratio. For each
Mach number, there is a particular temperature
ratio, T,/T,, for which the sum C, + I, dis-
appears. This means that the second-order
effects considered here have no effect on the heat
transfer. It should be remembered, however,
that the solution given here represents an
expansion in small x. The terms with higher
powers of x will probably not disappear.
Therefore, we conclude that the heat transfer
cannot be zero for all values of x simultaneously
and hence no adiabatic wall temperature can be
defined for a boundary layer of higher order.

B. Porous wall

The porous wall treats a 1/,/x wall mass flow
which leads to similar solutions for the case of
the flat plate. As a result of the second-order
effects, however, similarity no longer obtains,
equations (76) and (77) give, for this case, the
following :

0Cpw \/x
N 1027
3™ ( B|/x Bz>[

- 0940<1 - %)4— O-I64Ej| (94)

(9 o319
[ om{ ) som]

ac,
Cy
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X [1-029 — 0940 (1 — %) + 0-107 E]

£y/(Cx) { ]’ _ ol T )
+ =5 \LO 102 + 0-449 (\1 -7
— 0010E
_ . )
x |0:860 — 0-970(1 T) 0-288 £
T,
— | 1:354 — 0663 (1 —~> + 0148 E
L Tf- A
T,
x 1029 — 0-940(1 - ) +0107E }

—eJ(C) [0 197 — 0-189 T)
T,
+ 0015 E]} (95)
a8t a\/ C Tw>

E./(Cx) ! ] _Tw
—e—ps {[0117—-0090<1 T>

Pl

SN

-

+ 0055 E
B T 7
x | 0-860 — 0970 (1 — %) + 0-288 E
_ ( T =
+ [0250 - 010911 — —"—'>+ 0219 E
B N ¥ J
X —1 029 — 0940( T +O-107Eq}
L T, i
T,
— £ J/(Cx) [0180( —T—,—>+0160E

T, Y T,

-0 — ) _0134 | — -~
0180(1 T,) 3 E( T,>
+0-012E3]}.

If we normalize the skin friction to the first-order
value and the Stanton number at M =0 and
T, = 0 (both cases for the solid wall), then we
may write equations (95) and (96) as:

(96)
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6 CI 5 cfl (act
— = —— }+&J/(Cx)
0Cy (?mo) 0Cy (Cf10> v éCy
+ ac‘ l + .i{’_
0Cy x  0Cy,

e (St ¢ (S8t oC
= -9
0Cy (Stm> Cy (St10> * 8\/(CX)<6CM

al,
+3 CM)' (98)

(97

Equations (97) and (98) give the effect of mass
transfer at the wall on the second-order effects.
Figures 9-11 show the three terms in equation
(98), (8/0Cyy) (St,/St), 0C,/0Cy, and 81,/0Cy,
as functions of the Mach number, M, and wall

— 2k M=4
|2
516
~— '\ 3
2
8)
o |8
[¢] 2 \
-l 4]
= ] ]
20 i 2 3

TIV
Ta
FiG. 9. The effect of wall mass transfer (14/x distribution)

on the first-order Stanton number. Index 0 refers to M =0,
T,=0.

temperature ratio, T,/T,.. Figure 9 shows the
effect of mass injection at the wall on the first-
order Stanton-number. The behavior of the
function (6/6C,,) (St,/St,¢) is very similar to that
of the Stanton number itself shown in Fig. 6.
First, it is noted that for every value of the Mach
number there is a wall temperature T,/T,,, for
which (9/8C,,) (St,/St,o) = 0; ie. injection or
suction has absolutely no effect on the Stanton
number. As the Mach number increases, the
effect of mass transfer increases. This implies
that a given increase in suction effects a greater
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F1G. 10. The effect of wall mass transfer (1 A/x distribution)
on the transverse curvature coefficient for heat transfer
(see equation (98)).
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T

FiG. 11. The effect of wall mass transfer (14/x distribution)
on the second-order interaction parameter for heat transfer
(see equation (98)).
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increase in Stanton number for higher Mach
number. The Stanton number itself increases
with Mach number {constant wall temperature)
because the heat of dissipation deposited
in the boundary layer increases the tem-
perature gradient at the wall. Suction reduces
the boundary-layer thickness and henceincreases
the gradient; the magnitude of this change in-
creases with Mach number. At a constant Mach
number, increasing the wall temperature reduces
the effect of suction and ultimately the sign of
derivative will change. For values of the wall
temperature below the adiabatic temperature,
increasing the wall temperature increases the
thickness of the boundary layer and reduces
the temperature gradient. This also reduces the
effect of wall suction on the temperature gradient
and, hence, the Stanton number. As indicated
above, a wall temperature is reached (at a par-
ticular Mach number) at which no effect of
mass transfer on Stanton number is observed.
As the wall temperature is increased further, the
sign of the derivative becomes negative. In-
creasing suction at the wall still increases the
flow of heat but the negative temperaturegradient
at the wall changes the sign of the derivative.

Figure 10 shows the effect of wall mass trans-
fer on the second-order curvature effect. Thereis,
as in the case of the Stanton number, a wall
temperature (for a particular Mach number) at
which suction or injection at the wall have no
effect on the curvature parameter. For values
of the wall temperature below this value, the
effect of suction is to reduce the curvature effect.
This results directly from the concomitant
reduction in boundary-layer thickness. As the
wall temperature is increased, this effect is
reversed: i.e. increased suction increases the
curvature effect. This reversal is due to the fact
that at higher temperatures the increased heat
transfer resulting from the wall suction has a
greater effect on increasing the boundary-layer
thickness than the mass depletion from the
suction itself. The net result is an increase in
boundary-layer thickness and hence in the cur-
vature effect.

K. GERSTENand J. F. GROSS

The interaction effect is always negative, ie.
increasing the suction always decreases the
interaction between the curvature and dis-
placement effects. Injection at the wall always
results in the reverse effect. At higher tempera-
tures and Mach numbers, when the boundary
layer is thicker, the interaction effect is always
greater.
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LA COUCHE LIMITE DE SECOND ORDRE LE LONG D’UN CYLINDRE
CIRCULAIRE DANS UN ECOULEMENT SUPERSONIQUE

Résomé—On étudice la couche limite laminaire de second ordre le long d’un cylindre circulaire dans un
écoulement supersonique avec ou sans transfert de masse en utilisant la méthode des développements
asymptotiques. L'analyse donne le second ordre pour la pression, ia contrainte tangentielle et le transfert
thermique & la paroi. On présente des résultats numériques pour I'écoulement prés du bord d’attaque.

It y trois effets du second ordre dus & la courbure transverse. au déplacement et 4 'interaction de la

courbure et du déplacement.

Pour la paroi solide, les trois effets du second ordre augmentent le cisaillement et cela d’autant plus
que la température de paroi augmente. Dans le cas du transfert thermique, 'effet du déplacement disparait,
I'effet d’interaction est toujours positif (accroissement du transfert thermique) et I'effet de courbure
transverse est positif pour des faibles températures de paroi et négatif pour des températures élevées.

L'effet du flux massique & la paroi est généralement dans le sens prévu, c’est & dire que I'injection épaissit
ta couche limite et augmente les effets du second ordre tandis que P’aspiration réduit 'importance du

déplacement et de la courbure transverse.

Une exception a la régle générale énoncée ci-dessus se rencontre aux températures pariétales élevées.

GRENZSCHICHT ZWEITER ORDNUNG AN EINEM KREISZYLINDER IN
UBERSCHALLSTROMUNG

Zusammenfassung—Dic laminare Grenzschicht zweiter Ordnung entlang eines kreisformigen Zylinders
in einer Uberschall-Stromung mit und ohne Oberflichen-Stoff-Ubertragung wird untersucht, wobei
man die Methode entsprechender asymptotischer Expansionen anwendet. Insbesondere ergibt die
Analyse die Terme 2. Ordnung fiir den Druck, die Schubbelastung, und die Warmeiibertragung an die
Wand infolge der Quer-Oberflichen Erneuerung und der Verschiebung. Fir die Stromung nahe der
Anstromkante des Zylinders werden numerische Ergebnisse angegeben. Es gibt drei Effekte zweiten
Grades; nimlich infolge der Quer-Kriimmung, infolge der Verschiebung und infolge der Wechselwirkung
von Kriimmung und Verschicbung. Fiir die massive Wand vergrossern alle drei Effekte 2. Grades die
Schubbelastung und dieses Ergebnis wichst mit steigender Wand-Temperatur. Im Fall der Warmeiiber-
tragung verschwindet der Verschicbungseffekt, der Effekt der Wechselwirkung ist immer positiv
(Anwachsen der Warmeidibertragung), und der Quer-Kriimmungs-Effekt ist positiv fir niedrige Wand-
temperaturen und negativ fiir hohe Wandtemperaturen.

Der Effekt des Stoffstromes an der Wand liegt im allgemeinen in der erwarteten Richtung, d.h.
Stoffzugabe verdichtet die Grenzschicht und vergréssert Effekte 2. Ordnung wogegen der Wandsog
die Bedeutung von Verschiebung und Querkriimmung vermindert, wenn man Masse aus der Grenzschicht

abzieht. Eine Ausnahme zur oben dargesteliten Regel kommt bei hohen Wandtemperaturen vor.
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TTOTPAHUYHBIR CJI0OM BTOPOI'O [IOPAJKA KPYTOBOI'O LIMGIMHIPA
B CBEPX3BYROBOM IIOTORE

Annoranua—C noMomWb0 MeTONa ACHMITOTHYSCKHX DABJIOHEHMI HCCIeIyeTCA JaMHUHAPHEI
MOTPAaHUYHEI CJI0i BTOPOro HOPAJKA KPYrOBOTO LMJHHADA B CBEPX3BYKOBOM MOTOKE IIpH
HAJMYHM H OTCYTCTBUHM TOBEPXHOCTHOrO MaccoobMeHa. B pesyapraTe aHaiMsa mOJyYeHEI
YJIEHBl BTOPOrO MNOPAXKA IJA JABJIEHHA, KACATKIBHOrO HANPAMEHUA U TEILIOOOMEHa Ha
CTeHKe, BHIBBAHHHX MOTNEpPeYHOM KPHBH3HON [MOBEPXHOCTH M BHTecHeHueM. [IpejxcraBiieHst
YHUCIeHHBe Pe3Y.ILTATH JJIA TeACHUA Y IepeXHell TOYKHM LMIMHAPA.

CywmectBytoT Tpu a¢derTa BTOPOro pona, a UMEHHO: 3pdexTs, BHIBaHHEE NOMNEPEUHOH
KDHBH3HOM, BHITECHEHHEM U B3aMMOJeliCTBMEM KPUBHM3HH M BLITECHEHHA,

B cayuae TBepaoit creHku Bce Tpu aPdeKTa BTOPOTO MOPAZKA YBEJIUYHBAWT CIBHIOBOE
HANpAMEHNe, U 3TO BIMAHME YCUAMBAETCA € DOCTOM TeMIIEDATyphl CTeHKH. B cmayuae
TennooOMena d@@exT BeITeCHEHUA OTCYTCTBYeT, 3PPeKT BIaUMOENCTBUA BCErIa MOJOMITE-
JeH (MHTERCHQUUIHDYET TeILIoo0MeH), a 3PPEKT MOomepedHONl KPHBUBHBL MOMET ObITh KAK
TOJIOMUTENEHEM (P HUBKHX TeMIepaTypax), TaK M OTPHLATEJNbHBIM (IpH  BBICOKIHX
TeMIilepaTypax).

Bauanue noTroka Maccsl OGBIYHO He BBIBKIBAET COMHEHHMM, T.e. BAYB MACCH yBeJHUYMBAET
TOAMMHY DOTPAHMUYHOTO CJIOA M yCHJuBaeT >QQPeKTH BTOPOro poja, TOMAA KaK 0TCOC Ha
CTeHKe, YRAJIAA MACCY U3 MOIPAHHYHOTO CJIOA, YMEHbINaeT BIMAHME BBITECHEHUA 1 noneped-
Ho#t kpuBusHpl. Mckmouenue uz o0mero npaBuia NpeACTAaBJIAeT CIyyall BbICOKOH Temme-

paTypHl CTEHKH.



