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Al&a&-Th second-order laminar boundary layer along a circufar cylinder in supersonic flow with and 
without surface maas transfer is studied using the method of matched asymptotic expansions. SpeciScally, 
the analysis obtains the second-order terms for the pressure, the shear stress, and the heat transfer at the 
wall due to transVCnr surface curvature and displacement. For the flow near the leading edge of the cylinder 
numerical results are presented. 

Them am three second-order effects, namely due to transverse curvature, due to displacement, and due to 
interaction of curvature and dispiacement. 

For the solid wail all three second-order effects increase the shear stress and this result increases with 
increasing wag temperature. In the cam of heat transfer, the displacement effect vanislms, the interaction 
effect is always positive (increasing the heat transfer), and the transverse curvature effect is positive for small 
wail temperatures and negative for large waif temperatures. 

The effect of mass flow at the wall is generally in the expected direction; i.e. the injection ofmass thickens 
the boundary layer and increases second-orda effects whereas wag suction, by extracting mass from the 
boundary layer, reduces the importance of displacement and transverm curvature. An exception to the 

general rule stated above occurs at high wag temperatures. 

NOMENCLATURE fined by equation (1) ; 

f ,, 
speed of sound ; 
constant in equation (33); 

g, JW2 - 1); 
B,, n = 0, constants in equation (34); 

. . 4% 
C.f, 

%, 

CP, 

CP, 

G 

coefficient representing the trans- 
verse curvature effect on wall shear 
stress defined by equation (90); 
coefficient representing the trans- 
verse curvature effect on wah heat 

local skin friction coefficient de- flux defined by equation (91) ; 
fined by equation (15): D” coefEcient representing the dis- 
mass transfer parameter defined by placement effect on wall shear stress 
equation (12); defined by equation (90); 
specific heat capacity of constant E, (y - 1) M2/2, Eckert number; 
pressure ; f(v), nondimensional stream function 
wall pressure coefEcient defined by 
equation (14); 

defined by equation (39); 
fo(q),fl(q), nondimensional stream functions 

Chapman-Rubesin parameter de- defined by equation (68).; 
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functions defined by equation (57): 

nond~~~o~ temperature func- 
tion defined by equation (43); 
nondimensional temperature func- 
tions defined by equation (69) ; 
functions defined by equa- 
tion (57); 

modified Bessel function ; 
coefficient representing the inter- 
action effect on wall shear stress 
defined by equation (90); 
coeffkient representing the inter- 
action effect on wall heat flux 
defined by equation (91) ; 
thermal conductivity ; 
modified Bessel function ; 
Mach number ; 
non~~sion~ static pressure de- 
fined by equation (2); 
local heat flux at the wall ; 
1 + y, non~~sion~ radiaf co- 
ordinate ; 
radius of the cylinder ; 
Reynolds number defined by equa- 
tion (9) ; 
Stanton number defined by equa- 
tion (16); 
nondimensional temperature based 
on T,; 
wall temperature; 
free-stream temperature ; 
nond~~sion~ velocity compo- 
nent in x-direction of the inner solu- 
tion ; 
nondimensional velocity compo- 
nent in xdirection of the outer 
solution ; 
free-stream velocity ; 
no~d~~ion~ velocity compo- 
nent in y-direction of the inner soiu- 
tion ; 
nondimensional velocity compo- 

nent in y-direction of the outer solu- 
tion ; 
function defined by equation (31) : 
nondim~sion~ axial coordinate ; 
nondimensional coordinate perpen- 
dicular to the wall; 
y/s stretched coordinate; 
variable used in equations (31) and 
(32); 
ratio of heat capacities ; 
~~urbation parameter defmed by 
equation (17); 
nondimensional inner variable de- 
fined by equation (36) : 
variabte defined by equation f38); 
second order ;emperature function 
defmed by equation (43); 
variable in equation (31); 
nondimensional viscosity, based on 
free-stream viscosity ; 
nondimensional density based on 
free-stream density : 
Prandtl number ; 
wall shear stress ; 
potential function defined by equa- 
tion (24) : 
second order stream function de- 
fined by equation (39); 
viscous interaction parameter de- 
fined by equation (78) ; 
vorticity in the outer flow defined by 
equation (20). 

undisturbed free stream: 
wall ; 
adiabatic wall : 
first order ; 
firstorderforM=Oand T,=O: 
second order. 

Superscript 
* dimensional quantities. 
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1. INTBODUCI’ION 

IT IS well known that the classical Erandtl 
boundary-layer theory is valid only when two 
basic requirements are fulfilled : ( 1) the boundary- 
layer thickness must be small compared with a 
characteristic curvature dimension of the body 
surface and (2) the rate of growth of the boundary 
layer must be small. In this way, the curvature of 
the flow in the boundary layer as well as the dis- 
placement effect of the boundary layer on the 
inviscid free-stream flow can be completely 
neglected. 

In many practical situations, however, these 
basic requirements are not fulfilled and, there- 
fore, the use of the Prandtl boundary-layer 
theory is not justified. Examples of flows in 
which relatively thick boundary layers occur 
include high supersonic or hypersonic flows 
where viscous heating reduces the density and 
hence increases the thickness of the boundary 
layer. Ablation and transpiration cooling also 
thicken the boundary layer by the introduction 
of additional mass. Thick boundary layers can 
also occur at the rear of long slender bodies; the 
boundary -layer has continued to grow by 
entrainment from the free stream so that its 
thickness can no longer be neglected. 

A higher-order theory is necessary in order to 
study the effects of body curvature and dis- 
placement on the behaviour of the boundary 
layer. Van Dyke [l-4] has given careful and 
extensive treatments of this theory to obtain 
solutions for the Navier-Stokes equations at 
high Reynolds numbers using the method of 
matched asymptotic expansions. The classical 
boundary-layer theory represents the fast appro- 
ximation to the solution. The second approxi- 
mation, usually referred to as second-order 
boundary-layer theory provides a systematic 
framework to study the effects of body curvature 
and displacement. Other second-order effects can 
also arise from external gradients of entropy 
and enthalpy (vorticity) or from velocity slip 
and a temperature jump at the wall; these will, 
however, not be considered here. 

Few studies have been made in which the 

second-order effects resulting from curvature 
and displacement have been completely and 
properly treated. The reason is that determina- 
tion of the second-order effects is only possible 
at the present time if the boundary layer does 
not separate. Complete solutions of the second- 
order boundary layer exist only for the parabola 
(Van Dyke [5]) and the Rankine half body 
(Devan [6]). In both cases, the longitudinal 
curvature effect and the displacement effect are 
treated. The extension of these solutions to in- 
clude mass flow at the wall is given by Gersten 
and Gross [fl and Gersten et al. [8]. In the case 
of wall injection particularly, the second-order 
effects which result from boundary layer thicken- 
ing can be greatly enhanced. 

A body which has only transverse curvature is 
the circular cylinder whose axis is parallel to the 
free-stream flow. For this body, the effect of 
curvature alone has been investigated for the 
case of incompressible flow by Seban and 
Bond. [9], Kelly [lo], Cooke [ 111, Glauert and 
Lighthill [12], Eshgy and Hombeck [13], 
Wanous and Sparrow [ 141, Jaffe and Okamura 
[ 151 and Cebeci et al. [ 161. These solutions are 
not complete, however, because the displace- 
ment effect is missing and only incompressible 
flow is considered 

Consider the supersonic flow along the outer 
surface of hollow circular cylinder whose axis 
is parallel to the free stream_ The effects of trans- 
verse curvature and boundary-layer displace- 
ment as well as those of mass flow at the wall will 
be studied. It is assumed that the flow inside the 
cylinder cannot affect the flow on the outer 
surface. 

The purpose of the present work is to deter- 
mine the second-order effects resulting from 
transverse curvature and displacement on the 
induced wall pressure, wall shear stress, and wall 
heat transfer. Further, it will be shown how mass 
flow at the wall (injection and suction) influence 
these second-order effects. 

2. BASIC EQUA’IlONS 

We consider the supersonic flow of velocity 
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U, along the surface of a cylinder with radius p(x, y), the density p&x, y), and the temperature 
r,, and with its axis parallel to the flow direction T{x, y). By r = 1 -I- y the flow equations for this 
(see Fig 1). The coordinates in the axial and system are given by: 

__---- _-.--- 

--I 
I- _/-- 

urn 
/-- 

.-+,- 

6 P- .-.__ -.- -. A 
\ \/ 

‘. 
--__ 

--__ 
---__ ---_ --- 

i“rG. 1. Coordinate system for circular cylinder in axial flow. 

radial directions are x* and y*, respectively 

U )* indicates dimensional variable]. An 
idealgaswithconstantspecific heat,c,isassumed. 
The Prandtl number cr = crp*/k* is kept con- 
stant so that the’ viscosity, p*, and the thermal 
conductivity, k*, have the same dependence on 
the temperature, T*. The following assumption 
for the viscosity variation is made: 

P*P = PIVPW = CP,P, (1) 

when the indices w and cc refer to the wall and 
free-stream, respectively. In equation (1), C is 
the well-known Chapman-Rubesin coefficient. 

Rotational symmetry reduces the velocity 
to two components : u* in the x* direction and u* 
in the y* direction. The variabies are made 
nondimensional as foliows : 

x* J 
x=-- 

r. 
y=; 

u* v* 
u=---- 

u, 
u=-..-- 

urn 
(2 

The five dependent variables are the veiocity 
components u(x, y) and v(x, y), the static pressure 

where Qi is the dimensionless dissipation function 
given by 

~=*[(~~+(~)l+(~)i]+(~+~~ 

$2 +$+ ir. (7) 

The equation of state is 

-,-1 1 p=J-..-- ;’ 2E (pT-- 11 =--Y&W- 1). (8) 

The above equations contain the following 
dimensionless parameters : 
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Reynolds number: 

R _ PmUmrO 

Eckert number : 

_ c Y-1 
E Zc,,T, =TM2 

t 
(9) 

Mach number : 

M 
u =:ct, 
am 

Here, the dimensional sound velocity in the free- 
stream is designated by a,. The speed of sound, 
a*, is given by : 

aa = sp* ( > 6% 
=$=cp(y- 1)P. (10) 

In the free-stream this becomes: 

a’, = y 7 = c&y - 1) T,. (11) 
m 

For simplicity we assume that the normal 
wall velocity v, w l/,/x. Therefore, the boundary 
conditions for this system are: 

At the wall: 
y=o u=o 

PV 
PWVIV ES = - = - - c, (12) 

PlcU, 2Jx 

T= 3 = constant 
T, 

where C, is constant and designated as the 
wall mass transfer parameter. For the case of 
mass injection, C, < O.and C, > 0 for suction 
at the wall. The parameter E is given by equation 

(7). 
In the free-stream: 

X<O u=l 

r=o 

p=o 

p=l 

T= 1. 

(13) 

The functions p&) and p,,,(x) are unknowns 
and will be found as part of the solutions to the 
equations. 

The dimensionless parameters y, 6, C, R, E 
for M)l TwfT& and C, are prescribed and it is 
required to find the unknowndependentvariables 

a(~, ~1, 0(x, ~1. p(x, y), pk Y), and T(x, yl. In 
particular, we wish to determine the dist~bution 
of pressure and density at the wall: 

c (x) = pdx) - pm = p(x 0) PW 
P&J: ’ ’ 

y = pfx, 0). (14) 
m 

The wall shear stress: 

and the heat transfer at the wall (Stanton- 
nurn~r~ : 

We are concerned with solutions of the equations 
at large values of the Reynolds number, i.e. for 
R -+ CG. The solutions will be obtained using the 
method ofmatched as~ptoticexpansions where 
the perturbation parameter E is given by: 

The solutions will be obtained by appropriately 
matching inner and outer expansions which 
satisfy the inner and outer boundary conditions, 
respectively. The inner solution will then yield the 
required wall functions. 

3. OUTER EXPANSION 

The following expansions are assumed for the 
outer flow: 
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u = U,(x, y) f &U&x, y) + . . . 

u = v&c, y) t &v&c;yf + . . . 

p = P,(x, L’) + EPJX, 4’) -t . * . 

p = R,k y) + ER~(-Y. y) + . . . 

T= T;(x, y) + &T?(X, y) + . . . 

(18) 

Substituting these expansions in the flow equa- 
tions and matching with the undisturbed free- 
stream conditions yields the first-order terms 
directly : 

u, = l.V, =O,P, =O,R, = l,T, = 1. (1% 

The second-order terms are obtained by substi- 
tuting the above expansions into equations (3)- 
(8) and collecting terms according to powers of E. 
This gives a set of five equations for second 
order terms: U,(X, y), V&, Y), P,(x, y), R,(x, y) 
and T2(x. y). 

alienation of Pr in the second-order momen- 
tum equation yields the vorticity in the outer 
flow: 

(20) 

where o(Y) is the constant of integration which 
remains to be obtained from the boundary 
conditions. Since we have assumed no vorticity in 
the undisturbed free-stream any vorticity which 
occurs must result from the presence of curved 
shock waves. It will be shown that the second- 
order terms, which represent a correction to the 
undisturbed free-stream are solutions to the 
linearized potential flow equation. Therefore, 
within the context of second-order theory, no 
shock waves and hence no vorticity in the outer 
expansion can occur. It is always true that: 

The difference between a2 and ~2, is small, of 
of&), and can be neglected. It follows then that the 
continuity equation for the outer flow becomes: 

c’, 
(1 - M2)Z +1/v + 2 zz 0. (23) 

Equation (21) for the vorticity can be satisfied by 
a potential function #: 

The substitution of equation (24) into equation 
(23) yields the well-known potential equation 
for axisymmetric flow: 

The third term in equation (25) represents the 
difference between two-dimensional and axi- 
symmetric flow. 

The unknown potential function must satisfy 
the following boundary condition 

#&o = VJx,O) (26) 

where K(x, 0) is obtained by matching the inner 
and outer expansions and can be considered as 
known. Having obtained 4(x, Y). the five un- 
known functions are immediately given by 

P,L y) = -u&G 34 = - cp, (27) 

2;E 
R&s, y) = -- :’ _ 1 &&Y)- T,(x* y)= 

2E 
---4, “J-l 

T’Jx, y) = I?EP,k y) = - 2E#,. 

av2 au1 o ----_. 
ax ay t21) For the matching process. it is of particular 

Therefore, the entropy in the entire Outer field 
interest to obtain the velocity components in the 
x-direction at the walf; i.e. 

is also constant. Equation (10) for the speed of 
sound can be written: u+. 0) = $,, (x, 0). (28) 

a*l =. = U2,fl + EI;). (22) Several methods are available to solve the poten- 
tial equation, equation (2% with the boundary 
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condition, equation (26). If one does not 
require the solution #(x, y) specifically, but only 
the relationship between V;(x, 0) and U&O), 
then the operator method can be used. Ward [ 171 
has shown that the relationship between V&c, 0) 
and U,(x, 0) is given by 

B = &bf2 - 1). (30) 

The function W(z) is given by: 

w 

J e -A2 

W(z) = dE’ 2 z 0 (31) 
0 K:(a) + n21f(a) a 

where K,(A) and II(A) are modified Bessel 
functions The function W(z) is given by Ward 
[ 171. The expansion for W(z), when z is small, is 

tiven by 

W(z) = 4 - $z + 7;?6z” - . . . 0 < z < 2. (32) 

Solutions near the leading edge, i.e. for small x, 
will be examined more closely. The function 
V,(x, 0) can be written in the form 

V2(x, 0) = $. (33) 

If we use the expansion for W(z) for small z 
[equation (32)], then equation (29) yields 

U,k 0) (34) 

The initial coefhcients are t&n given by 

B Ao Ao 
o= --, 

B 
B I=---_, B2 B2 = - f 3. (35) 

4. INNER EXPANSiON 

For the inner expansion, a new variable, r~, is 
defined as follows: 

vl -- /‘(l + y)dy. (36) 
0 

The effect of p, the density, can be accounted 
for by the Dorodnitsyn-Howarth transforma- 
tion which transforms the compressible flow 
problem to an incompr~sible one. Equation 
(36) can be written : 

ds y = &2J(CX) p+q&z)* (37) 

It can be seen that f [see equation (36)] and q 
defmed by : 

(38) 

differ only by O(s). For an incompressible flow, 
@ reduces to the well-known similarity variable 
for first-order boggy-lays theory (Dewey 
and Gross [ 181). In that case, the function y/c 
would have sufficed for the inner variable. The 
generalization of q given in equation (36) 
has been chosen to simplify the equations. 

The five unknowns are functions of x and rl 
only and the following analytical asymptotic 
expansions are assumed : 

1 
us --& 

4 JC > 
; Vs’-&)+ o(a2) (4) 

- tM~,g3 + oust) (42) 

T= $9’ + E$5$ + q&2). (43) 

Here the indices x and q denote partial 
differentiation and primes indicate d( )/dq. The 
expansions for u and o have been selected so 
that continuity is satisfied. The value for tr at 
the wall is given by 
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& 
(pt;), = _$L = - - 

n m 2 J( 1 
; .ffOi 

Inspection of the y-momentum equation. equa- 
tion (5), shows that For the pressure p no absolute 
term can be obtained and that the term pro- 
portional of 8 is independent of q, i.e. p2 = pJx). 

Substitution of equations (39)-(43) into the 
x-momentum equation, equation (4), and the 
energy equation, equation (6), yields the follow- 
ing differential equations for the unknowns 
f(s), g(rf), VW. rl), and B(x, 11): 

bm + f bl 

f”’ +ff” = 0 (45) 

;g*t* + fg” =; - &“‘l (46) 

+ rcYr = 2xcf’J/,, - y!ff”) 

+ %7’P*x - 2J(x)(g’_P + gf’3 (47) 

; 8,, +_M, = zxve,, - $,g”) 

- tl/g” 
2Jx - -$g’g” + gg”‘) - 2EIf”lj,, 

-t- (JX)gP + 2xp,,gIf’]. (48) 

Only the first of these four differential equations 
is nonlinear; the others are linear. Therefore 
$(x. q) and g(q) are linear functions of the 
Eckert number E. while B(x, s) is a quadratic 
function of E. 

The form of PJ makes f(q) independent of the 
other unknowns. Equation (45) represents the 
classical flat plate boundary-layer problem 
whose solutions are well known. Once f(q) is 
known, the remaining differential equations can 
be solved successively. However, the following 
boundary conditions at the wail must be 
satisfied : 

8 = 0, 8 ” = 0. 

The conditions 810) = 0 follows from substitu- 
ting equation (42) into equation (37) and 
requiring q = 0 when _V = 0. 

In order to obtain the boundary conditions 
for the inner solution when q + xc, the two 
solutions have to be matched. The outer 
expansion is lirst written in the inner variables 
x. J where ji = Y/E. The expansion is evaluated 
near the wall : 

u = 1 + &U&C,&.?) = 1 + EU~(S.0) + O&G) 

V = E v,(X, ET) = &v--(X.0) + OH 

p = EPJX, E-F) = &P&X, 0) + O(EZ) (50) 

p = 1 + &R&.x.cj)= i + ~&(x.0) + ‘&?f 

T= 1 f ET~(.x.E~;) = 1 i- ET&LO) + O#). 

In this particular example, all asymptotic 
expansions to O(c) are independem of J. Since 
j is of the same order as 4 [see equation (3711, 
equation (50) can be considered as the asymtotic 
expansion of the outer solution in inner variables. 
Therefore, the following matching relations are 
obtained if only terms to O(c) are considered. 

1 + sUJx,O) =I lim 

P,(x, 0) = (JC)p,tN is11 

1 + cR(x.0) =: lim q-7 -1 

1 + ET~(x,O) = lim 
v- ’ 

From theseexpressions. one obtains immediately 
the boundary conditions 

hnl f” = 2 
I’m 

lim g’ = 2 
s-+* 
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(52) 

P2W JC = -L P,(x, 0) 

The last equation for p&z) is a combination of 
equations (27), (34) and (52). Substituting equa- 
tion (57) into equations (47) and (48) and ordering 

The purpose of obtaining the inner solution is to the terms by powers of x, a set of ordinary 
determine the important flow properties at the differential equations results 

wall. These are the pressure, shear stress, and 
heat transfer at the wall as defined in equations 
(14)-(16). The inner solution enables one to 

Fb” + fF;; +rF; - 2$g’ -- 

write directly : 

c,,(x) = kJx) - p* = &p (x 0) 
F;” + fF;’ - f’F; + 2f”F1 = - %g’ 

PWU', 
2 3 - yg - 2f"'g 

= 4JC)Pzb4 (53) 
;Gb’. + fG; +f’Gb = - 2Ef”F; 

(54) 

- 2EJC 
Bofg’ 

lG;“+fG;’ 
(55) fs 

-f’G; = - 2F,g” 

St(x) = 
4w(x) 1 c -- - 

CpPJLL = 46 x J( ) 
- i(g’g” + gg”‘) - 2E[f”F;’ + g(f”)’ 

x (9” + +/C) &&o. (56) 

Only five functions are needed to evaluate the 

(58) 

(59) 

(60) 

(61) 

wall properties, i.e. p2(x), f”(O), eln(x, O), g”(0) 
and B,,,,(x, 0). These functions are in general 
dependent on the parameters y, C, a, E or M, 
T-K,, and CM. 

The boundary conditions for the system of 
equations (58)-(61) are 

q=O F,=O Fb=O Go=0 

G; = 0 5. SOLUTION FOR THE LEADING EDGE 

In this section, we carefully examine the 
solutions to partial differential equations, equa- 
tions (47) and (48) for small values of x, i.e. in the 
neighborhood of the leading edge. The 
following expansions are assumed : 

(57) 

F ,=o F;=O GI=O 

G; =O (62) 

‘I+CO FL=22 yc G; = - 4EFc 

F; e23 
(63) 

Jc 
G; = - 4E Fc 

lim If(q) - g(q)] = 2 3. (64) 
q-J; 
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The expressions for F:(O) and G:(O) can be 
obtained from equations (58) and (60) by a 
straightforward procedure. The equation for 
F,(q) may be integrated directly and the result is 

F;(q) = F;;(O) + 
2& 
Jc&) -_Btl)Fb(lt) * (65) 

When q -+ c;c, we obtain 

4BB’ 
F:(O) 7 28, lim [f(q) - g(v)] = &-. (66) 

dL9+m t 

An analogous integration procedure for E,(q) 
from q = 0 to q = x) gives 

The integrals in equation (67) have keen 
calculated by using the expressions given in 
equation (65). This interesting result has also 
been noted by Maslen [ 191. 

The mass-transfer parameter CM directly 
influences f and, due to the nonlinearity of the 
equation for f; cannot be assumed to be linear 
in the system If, however, the parameter Cnr is 
taken to be small, all functions can be expressed 
as linear combinations. For example, we can 
write 

f(V) =f&) + CMUV) (68) 

s(tl) = g&J) + C&f&) (69) 

which yields a set of differential equations 

fb” +fofo’ = 0 

1 
prg;’ + fog; = --fig; - 2Ef;f;’ 

with the boundary conditions 

(70) 

fl=l f;=o gl=o 

g; = 0 

?/-+ x f‘b= 2 g; = 2 (71) 

j+o g;=o. 

An analogous procedure for small Cald can be 
carried out for the functions F,,, F 1, Go and G1. 
Exact calculations showed that a linear approxi- 
mation using C, introduces an error of less 
than 1 per cent for / C,+, j < O-1. 

The solution to the system of equations can 
be used to evaluate the wall properties defined 
in equations (533-156) : 

cpw(x) = - &(B,x-* + B,x* + . . .) + O(E’) (72) 

+ F;‘(O)x+ -i- . . .] ;. + oh3) (73) 

St(x) = --E-& + E(JC) 

x [G;‘(O)x+ + . . . ] )- + o(2). (74) 

The coefficients in these expressions, i.e. the 
second derivatives of velocity and temperature 
at the wall, are functions of the wall temperature 
T,I’T,, the Eckert number E, and the mass- 
transfer parameter C,, which, however, will be 
assumed to be small. The term proportional to 
F:(O) gives the effect of displacement without 
wall curvature and is hence identical with the 
displacement effect on a flat plate. It can be 
seen that the term is proportional to .?/x, which 
is independent of the radius of curvature and 
identical to that found in the solution for the 
flat plate by Maslen [19j. According to equation 
(74), the heat transfer is unaffected by displace- 
ment thickness, a result which has also been 
noted by Maslen [ 191 (see also Hayes and 
Probstein [20]). The shear stress at the wall 
resulting from displacement does not disappear 
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at the leading edge but is proportional to x- ‘. 
This leads to the result that the integral for the 
overall wall shear stress does not converge. 
This is clearly due to the singularity existing at 
the leading edge. Within the context of the 
theory of asymptotic expansions, in which the 
second-order solutions are linear corrections 
to the first-order flow, the displacement effect 
can be regarded only as a linear correction in the 
sense of weak viscous interaction. In the 
neighborhood of the leading edge, it is clear that 
a strong viscous interaction obtains. This 
cannot be treated here. 

The influence of curvature on the flow and 
temperature, which is given by the terms 
proportional to F;‘(O), and G;‘(O), respectively, 
can be separated formally into two parts. The 
first part, regarded as pure curvature effect, 
results from additional terms appearing in the 
inner expansion for the flow. The second part, 
which we denote as interaction effects, results 
from the displacement effect. For the same 
boundary layer displacement thickness, this 
latter effect is weaker for the cylinder than for 
the flat plate. For the same reason, the surface 
pressure along a cone whose axis is parallel to 
the flow is less than that about a similarly 
placed wedge with the same angle. 

6. NUMERICAL RESULTS 

A. Solid wall 
The system of equations (58H61) and (70) 

with the boundary conditions given by equations 
(62)-(64) and (71) was solved numerically for 
D = 0.72. In the case of the solid wall (C, = 0) 
equations (72)-(74) give the following expressions 
for wall functions 

- 09703 (1 - $j+ 0.2878E] (75) 

cdx) = ,@){0.3321 + $)[0.8604 

x [1.1656--057~~-~~DL276t] 

x [I-&1278(1-2)+0334X] 

+ e,/(Cx) 06943 - 0.4894 1 - 3 
( > T” 

+ 00909E II (76) 

St(x)= -$)(02956(1 -2) 

+ 0.2506E + s+ [,_,,,I - 00935 

x (1 -$)+0.2505E] x [I - I.1278 

x(1-~)+03345E]+E\I(Cx) 

x [06659(1 - $)+ 05198E - 04560 

x (1 -$$42798E(l-$) 

+ 0.0665 (E)2 II . (77) 

The pressure distribution on the wall [see 
equation (7511 is a second-order effect which 
results directly from the displacement caused 
by the first-order boundary layer. The expres- 
sion for the pressure is a composite of two parts, 
each having a different dependence on x. The 
first part is identical with the flat plate result of 
Maslen [ 191. This is clear by inspection because 
s/Jx is independent of the radius of curvature. 
The second part, proportional to EJx, gives the 
influence of transverse curvature on the displace- 
ment. Therefore, the second part contains both 
the transverse curvature as well as the displace- 
ment. It will hence be called the Interaction 
Effect. It reduces the pressure from that found 
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on the flat plate as expected. Although both 
terms have a different dependence on X. both 
give a pressure drop so that they have a similar 
second-order effect on the boundary layer. 

The numerical values in the brackets in 
equation (75) agree very well with those given 
for Q = 0.725 by Hayes and Probstein [20], 
equation (9.2.5b) : 

0.8604 0,865 
0.9703 O-968 
0.2878 0.289 

The pressure distribution resulting from 
boundary-layer displacement is directly related 
to the problem of weak interaction (Hayes and 
Probstein [20]). The interaction parameter, 
which has been defined for high Mach number 
flows on flat plates, cones, and wedges, is: 

i/C 
El JC)M3 

J .x 
(78) 

Using this parameter, equation (75) may be 
written : 

- 0.9703 (I -g)+ 0.2878E]. (79) 

It has been assumed th:t M $ 1. so that 

B-M. (~0) 

For the same reason, equation (79) may be 
written 

(81) 
An important role is played by the first-order 
adiabatic wall temperature 

T 
-E = 1 + 0.8478E. 
T, 

(82) 

Substituting the adiabatic wall temperature into 
equation (81) with y = 1.4. we obtain : 

PW 
-- 1=0.311,(, -F). (83) 
PT 

If the second term in the bracket is neglected. 
equation (83) gives the expression for first-order 
weak interaction (Hayes and Probstein [20]) 
and the range of validity for weak interaction is 
given as 0 c y c 4. Strong interaction obtains 
for y > 4. The effect of transverse curvature is 
given by the second term in the parentheses and 
depends on x and the combination of parameters 
Cc2M5. Since the effect of transverse curvature 
decreases with increasing 7, we can expect in the 
strong interaction region where 7 > 4. that the 
role of transverse curvature will be small. The 
region in which this will be correct is given by: 

1 
EQm. 

It will be assumed that equation (84) is satisfied 
in subsequent considerations. Therefore. all 
results are valid for y < 4. For y > 4, the strong 
interaction solution for the flat plate can be used. 

The relationship between our solution and 
that for the flat plate with weak interaction was 
illustrated only for the purpose of estimating a 
region of validity for our solution. In general, the 
weak interaction theory is concerned with two 
perturbation parameters : E and l/M. Both para- 
meters approach zero in such a way that the com- 
bination of these parameters jl z Ed is of 
order unity. In the hypersonic-flow solution. a 
weak shock ensues which must be coupled to the 
linearized potential flow solution by an inter- 
mediate inviscid layer (see Bush and Cross [ 2 l] ). 
In the case where M + x, great care in matching 
the boundary layer to the free stream is necessary 
as indicated in detail by Bush and Cross [21] and 
Stewartson [22]. 
- In order to estimate the errors resulting from 
the truncation of the series in Vi~ in equation 
(75). we consider the first neglected term. If we 
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include this term, then the expression in the 
brackets in equation (75) would be 

l Jx 
z& 

-- 
B2 1-G* ( ) (85) 

If we assume an error of 10 per cent in the last 
term to be included, then we obtain an expression 
for the range of x for which the series expansion 
is valid : 

x < 0.2 B. 636) 

Considering only high Mach numbers and 
assuming that no transverse curvature effects 
occur in the strong interaction region, the range 
of validity for our solutions is given by : 

0.1Cs2M6<x<0.2M. (87) 

It is difficult to estimate how far downstream 
the second-order solution is valid without having 
done the third-order theory. Estimation of the 
third-order contribution from transverse curva- 

FIG. 2. induced wall pressure distribution. 

ture gives a value of x above which third-order 
effects must be taken into account 

001 

x=cE2’ 
(88) 

It would be reasonable to expect, however, that 
displacement would reduce the values of x given 
in equation (88) for which third-order effects 
become important. 

The induced wall pressure distribution C,,(x) 
is shown in Fig 2 as a function of Mach number 
and temperature ratio, T,/T,. The pressure 
function is positive in general and increases 
linearly with temperature. The dependence on 
Mach number is quadratic. It is interesting to 
note that the pressure can even be negative in a 
small region near M = 1. For all Mach numbers 
M < l-381, there is a temperature ratio, T,,,/T,, 
for which the induced pressure distribution 
disappears 

T 
-!! = 0.1133 - 00593 M2. 
TOI 

(89) 

We are concerned in this instance with very 
low wall temperatures. Consequently, the density 
near the wall is very much greater than in the 
free stream. Because of this high density at the 
wall and in the boundary layer, the mass flow 
in the boundary layer remains constant in spite 
of the velocity reduction near the wall. In some 
cases, the mass flow can even be greater than 
that in the free stream. Therefore, in the region 
near a Mach number of unity, the boundary 
layer could exert a negative displacement effect, 
i.e. a suction effect on the free stream. 

Equations (76) and (77) can be formally 
written as follows : 

Cf -= 
Cl10 

I + J&/C) C&/x) + Dr L 
Jx 

+ I& 1 (90) 

St St, 
/ 

- = - + E(JC) cc&/x, + I,&). 
St10 St,0 

(91) 

The indexes 1 and 10 in the subscripts indicate 
first-order solutions and first-order solutions 
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rw 
-c- 

FIG. 3. Displacement effect coefficient for shear stress D, 
according to equation (90). 

with M = T, = 0. respectively. The functions 
in the parentheses represent the second-order 
solutions. C, and C, are the transverse curvature 

2 

I I I 
0 I 2 

7;- 

r, 

FIG. 4. Transverse curvature coefficient for shear stress C, 
according to equation (90). 

effects: D, is the effect of displacement which 
occurs only for the shear stress, and Z, and I, are 
the interacting effects of transverse curvature 
and displacement. These functions are dependent 
on the Mach number and wall temperature ratio, 

T-k.1 T,. 
The displacement coefficient, D,, which is 

identical to that for the flat plate, is shown in 
Fig. 3. D, is always positive. even in regions in 
which the induced wall pressure is negative. 

-_ 

M=Z 

0 2 3 

FIG. 5 Second-order interaction parameter for shear stress 
I, according to equation (90). 

For values of wall temperature ratio, T,/T,, 
given in equation (89) 0, ZE 0. For values of the 
adiabatic wall temperature and high Mach 
number, D, is given by 

D, = 0.1485 M3 (7 = 14). (92) 

Neglecting curvature effects and using the 
definition of y, equation (90) gives the well 
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FIG. 6. First-order Stanton number 

known flat-plate weak interaction expression 
(Hayes and Probstein [20], equation (9.2.26)) 

2 = 1 + 014851. (93) 
CD 

The coefficient C, is given in Fig. 4 as a function 
of M and TWIT,. It is always positive and linear 
with the wall temperature ratio TJT,. It is a 
quadratic function of M. Figure 5 shows the 
interaction coefficient I,. It is also always 

9 

to- 

/ 
5- 

I 

/ 

o- 

-5 - 

-10, I I I 
0 I 2 3 

FIG. 7. Transverse curvature coeffkient for heat transfer C, 
according to eouation 1911. 

The coefficients which occur in equation (91) 
are shown in Figs. 6-8. Figure 6 shows the well 
known behaviour of the Stanton number for 
the first-order boundary layer. The characteristic 

FIG. 8. Second-order interaction parameter for heat transfer 
I, according to equation (91). 

positive and nonlinearly dependent on T,/T,. 
All three coefIicients, D, C, and I, are of the 
same order of magnitude. 
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zero values for the adiabatic wall temperature 
given by equation (82) are shown. The curves C, 
as functions of wall temperature ratio in Fig. 7 
show a similar behavior. For small values of the 
wall temperature ratio, T,/T,, the curvature 
effect is initially positive but changes sign with 
increasing temperature. For each Mach number, 
a wall temperature ratio exists for which the 
curvature effect is a maximum. 

It has already been indicated that there is no 
displacement effect on heat transfer. The inter- 
ference effect is shown in Fig. 8. It is always 
positive and increases nonlinearly with Mach 
number and wall temperature ratio. For each 
Mach number, there is a particular temperature 
ratio, TJT,, for which the sum C, + Z4 dis- 
appears. This means that the second-order 
effects considered here have no effect on the heat 
transfer. It should be remembered, however, 
that the solution given here represents an 
expansion in small X. The terms with higher 
powers of x will probably not disappear. 
Therefore, we conclude that the heat transfer 
cannot be zero for all values of x simultaneously 
and hence no adiabatic wall temperature can be 
defined for a boundary layer of higher order. 

B. Porous ~11 
The porous wall treats a l/Jx wall mass flow 

which leads to similar solutions for the case of 
the flat plate. As a result of the second-order 
effects, however, similarity no longer obtains, 
equations (76) and (77) give, for this case, the 
following : 

ac 
== -a(&,(&$)~-027 
ac, 

3=&J(;) {O&52+./(3 
aCM 

x [0860-0*970(1 -2)+0288E] 

(941 

,.,,(l - 2)+ O.,,7E] 

0.102 + 0449 ‘1 - + 
( ) 

r -I 
- O-010 E 1 

x [0.860-D97Ojl +)-0,288: 

- [1354-O+ -$)+,.I,,~ 

+ 0.055 E 1 
x ~860-0.970(1-~)+0-288E] 
+ 
x 
-i_y,Cx+l80~ +)+0~16OE 

-0.1806 -$>1 -0.134Ec -2) 

+ 0.012 E’ 11. (96) 
-. 

If we normalize the skin friction to the first-order 
value and the Stanton number at M = 0 and 
T, = 0 (both cases for the solid wall), then we 
may write equations (95) and (96) as : 
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& ($J = & (Z)+,J(Cx)(2 
ac,l SI, 

+ac, s+x, ) 
(97) 

&(&) = z&(z) + &J(CX)(2 
al, 

+ fT&f > . (98) 

Equations (97) and (98) give the effect of mass 
transfer at the wall on the second-order effects. 
Figures 9-11 show the three terms in equation 
(98), WG,) W,lSt,,), X,#C,, and aZ,lX, 
as functions of the Mach number, M, and wall 

-I - 

-* j 
0 2 

FIG. 9. The effect of wall mass transfer (ldx distribution) 
on the first-order Stanton number. Index 0 refers to M = 0, 

T,=O. 

temperature ratio, T,/T,. Figure 9 shows the 
effect of mass injection at the wall on the first- 
order Stanton-number. The behavior of the 
function ca/X,) Gt,/St,,J is very similar to that 
of the Stanton number itself shown in Fig. 6. 
First, it is noted that for every value of the Mach 
number there is a wall temperature T,/T,,, for 
which (a/X,)(gt,/St,,-,) = 0; i.e. injection or 
suction has absolutely no effect on the Stanton 
number. As the Mach number increases, the 
effect of mass transfer increases. This implies 
that a given increase in suction effects a greater 

3- 

2- 

I- 

-3 I I I 
0 I 2 3 

7;- 

r, 

FIG. 10. The effect of wall mass transfer (Idx distribution) 
on the transverse curvature coefficient for heat transfer 

(see equation (98)). 

I 

?- 
Y 

z 
FIG. 11. The effect of wall mass transfer (l&/x distribution) 
on the second-order interaction parameter for heat transfer 

(see equation (98)). 
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increase in Stanton number for higher Mach 
number. The Stanton number itself increases 
with Mach number (constant wall tem~rature~ 
because the heat of dissipation deposited 
in the boundary layer increases the tem- 
perature gradient at the wall. Suction reduces 
the boundary-layer thickness and henceincreases 
the gradient; the ma~itude of this change in- 
creases with Mach number. At a constant Mach 
number, increasing the wall temperature reduces 
the effect of suction and ultimately the sign of 
derivative will change. For values of the wail 
tem~rature below the adiabatic temperature, 
increasing the wall temperature increases the 
thickness of the boundary layer and reduces 
the temperature gradient. This also reduces the 
effect of wall suction on the temperature gradient 
and, hence, the Stanton number. As indicated 
above, a wall temperature is reached (at a par- 
ticular Mach number) at which no effect of 
mass transfer on Stanton number is observed. 
As the wall temperature is increased further, the 
sign of the derivative becomes negative. In- 
creasing suction at the wall still increases the 
Ilowofheat but thenegative temperaturegradient 
at the wall changes the sign of the derivative. 

Figure IO shows the effect of wall mass trans- 
fer on the second-order curvature effect. There is, 
as in the case of the Stanton number, a wall 
temperature (for a particular Mach number) at 
which suction or injection at the wall have no 
effect on the curvature parameter. For values 
of the wali temperature below this value, the 
effect of suction is to reduce the curvature effect. 
This results directly from the concomitant 
reduction in boundary-layer thickness. As the 
wall temperature is increased, this effect is 
reversed; i.e. increased suction increases the 
curvature effect. This reversal is due to the fact 
that at higher temperatures the increased heat 
transfer resulting from the wall suction has a 
greater effect on increasing the boundary-layer 
thickness than the mass depletion from the 
suction itself. The net result is an increase in 
boundary-layer thickness and hence in the cur- 

The interaction effect is always negative, i.e. 
increasing the suction always decreases the 
interaction between the curvature and dis- 
placement effects. Injection at the wall always 
results in the reverse effect. At higher tempera- 
tures and Mach numbers, when the boundary 
layer is thicker, the interaction effect is always 
greater. 
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LA COUCHE LIMITE DE SECOND ORDRE LE LONG DUN CYLINDRE 
CIRCULAIRE DANS UN ECOULEMENT SUPERSONIQUE 

R&mm&On 6tudie la couche limite laminaire de second ordre le long d’un cyhndre circulaire dans un 
6coulement supersonique avec ou sans transfert de masse en utilisant la mChode des dtveloppements 
asymptotiques. L’analyse donne le second ordre pour la pression, la contrainte tangentielle et le transfert 
thermique a la paroi. On prtsente des r6sultats numeriques pour 1’Ccoulement pr& du bord d’attaque. 

II y trois effets du second ordre dus a la courbure transverse. au d6placement et a l’interaction de la 
courbure et du diplacernent. 

Pour la paroi solide, les trois effets du second ordre augtnentent le cisaillement et cela d’autant plus 
que la temperature de paroi augmente. Dans It cas du transfert tbermique, l’effet du d6placement d&par&, 
l’effet d’interaction est toujours positif (accroissement du transfert thermique) et l’effet de courbure 
transverse est positif pour des faiWes temp6ratures de paroi et nCgatif pour des temp6ratures &&es. 

L’effet du flux massique a la paroi est g6nCralement dans lc sens p&u, c’est a dire que l’injection epaissit 
ta couche limite et augmente les effets du second ordre tandis que l’aspiration rcduit l’importance du 
diplacement et de la courbure transverse. 

Une exception a la rtgle genCrale Con&e ci-dessus se rencontre aux temp6ratures par&ales &v&s. 

GRENZSCHICHT ZWEITER ORDNUNG AN EINEM KREISZYLINDER IN 
OBERSCHALLSTROMUNG 

Zwsammenfaaamsg-Die laminare Grenzschicht xweiter Ordnung entlang eines kreisf&migen Zylinders 
in einer Uberschall-Strdmung mit und ohne Obertllichen-Stoff-Ubertragung wird untersttcht. wobei 
man die Methode entsprechender asymptotischer Expansionen anwendet. Insbesondere ergibt die 
Analyse die Terme 2. Ordnung ftir den Druck, die Schubbelastung, und die Wiirmeiibertragung an die 
Wand infolge der Quer-Oberfhichen Erneuerung und der Verschiebung. Ftir die StrBmung nahe der 
Anstromkante des Zylinders werden numerische Ergebnisse angegeben. Es gibt drei Effekte xweiten 
Grades; nlmlich info@ da Quer-Kriimmung, info@ der Verschiebung und infolge der Wechselwirkung 
von Kriimmung und Verschiebung. Fiir die massive Wand vergr&wem alle drei Effekte 2. Grades die 
Schubbelastung und dieses Ergebnis wgchst mit steigender Wand-Temperatur. Im Fall der Wlnneiiber- 
tragung verschwindet der Verschiebungseffekt, der Effekt der Wechselwirkung ist immer positiv 
(Anwachsen der Warmeiibertragung), und der Quer-Kriimmungs-Effekt ist positiv fiir niedrige Wand- 
temperaturen und negativ ftir hohe Wandtemperaturen. 

Der Effekt des Stoffstromes an der Wand liegt im allgemeinen in der erwarteten Richtung, d.h. 
Stoffaugabe verdichtet die Grenaschicht und vergr6ssert Effelcte 2. Ordnung wogegen da Wandsog 
die Bedeutung von Verschiebung und Querkriimmung vermindert, wenn man Masse aus der Grenxschicht 

abzieht. Eine Ausnahme xur oben dargestellten Regel kommt bei hohen Wandtemperaturen vor. 
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IIOI’PAHWiHbl~ C.JIOZi BTOPOI’O II0PFl~jII.i HPYrOBOI’O IJk1;IEIH~P.A 
B CBEPX3BYKOBOM I-IOTOHE 

hEOTBqRS+-C IIOMOIIVkO MeTOlIa aCIIMnTOTWIeCKKX p33JIOmeHId IiCCGIeJyeTCH .YIaMElH3pHblit 

IIOrpaHW4HbIfi CJIoti BTOpOrO IIopFIzKa KpyrOBOrO IJMJlHHi[pa B CBepX3ByKOBOM nOTOKe IIpII 

HaJIA'IBK If OTCyTCTBAA nOBepXHOCTHOr0 traccoo6Meaa. B pe3yabTaTe aKam3a no.nyyeKbI 

9neHbI BToporo nopflaKa 2x14 zaBnemff, KacaTKjIbKoro Kanpfimewrfl II TemoodmeHa Ka 

CTeHKe, BbI3BaHHhIX nOIIepeqHOti KpIIBIIOHOti nOBepXHOCTM Pi BbITeCHeHUeM. npelCTaB.ZeHbI 

wcnefiKbIe pe3yabTam~m TefxeHm y nepexaefi ToqtiIx qnnwa~pa. 

CylQeCTByloT TpI4 3+#eKTa BTOpOi’O POna, a IIMeHHO: 3@.$eKTbI, BbIBBaHHbIt? tIOrU.?pe~HOfi 

KpHBli3HOfi, BblTfXHeHHt?M R B3aliMOJ@iCTBH.%l KPMBA3HbI H BMTBCHc?HMR. 

B CZyWle TBepfiOii CTeHKM BCe TPH 3@&KT3 BTOpOrO I-IOpHAKa J’Bt?.XElWIB3.lOT C;IBIIPOBOP 

HaIIpRHWiHe, M 3T0 BZUIHHlle yCWIMBaeTCS4 C POCTOM TeMnepaTypbI CTeHKH. B CJIy'Iae 

T3IlJIOO6Mt?H3 3$N@KT BbITt?CHE!HIIfl OTCYTCTBJ’BT, 3I#I@eKT l333KMOA&iCTBKH BCW33 l’IOJIOPKHTe- 

;IBH (tiHTeHCW#WJHp~eT TennOO6MeH), 3 3@@KT I’IOtIepeWiO~ KpHBH3HbI MOPKt?T 6bITb KBK 

nOJIO?KATenbHIJM ("p&i HABKKX TeMIIepaTypaX), TaK 5% OTpHUaTeJIbHbIM (np&I BbICOKIfX 

TeMnepaTypaX). 

BnmHae nOTOKa MaCCbI 06bIYHO He BbI3hIBaeT COMHeHH2i, T.e. BAyB MaCChI yBeJIWIMB3eT 

TOJIIJJMHy IIOrpaHWIHOrO CJIOR EI yCtIJIMBaeT @@eKTbI BTOpOrO pOAa, TOrA3 KaK OTCOC Ha 

CTeHKe, yAaJIJW MaCCyH3 nOrpaHWIHOr0 CJIOf?, yMeHbIUaeTB*?HRHlle BbITeCHeHHR A nOnepeY- 

HOti KpHBM3HbI. &'iCKZIKFleHHe II3 obmero IIpaBllJIa IIpeACTaBJVIeT CZIyYai BbICOKOti TeMIIe- 

paTypb1 CTBHKEI. 


